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This paper is concerned with the approximation of functions by linear
combinations of multivariate B-splines. We construct and analyze local linear
approximation schemes on certain uniform configurations. Furthermore we point
out how these uniform configurations may be refined locally while still preserving
the desired global smoothness of the splines.

1. INTRODUCTION

This paper is concerned with an attempt to exploit the advantageous
properties of multivariate B-splines (cf. [4, 10, 19]) for the purpose of
approximation. One attractive property of multivariate B-splines is the fact
that for an arbitrary spatial dimension s and any degree k a B-spline
generally belongs to Ck-'(R S

) (the space of functions possessing continuous
partial derivatives of order k - 1) as well as being locally supported. This
fact should be contrasted with the many examples in the literature (cf., e.g.,
[7, 20, 22]) which affirm that being a multivariate piecewise polynomial of
high global smoothness (compared to its degree) and at the same time having
local support are usually conflicting properties. Of course, both properties
are important for various applications such as smooth surface fitting or
solving higher order boundary value problems by finite element methods.

At first we shall briefly discuss a rather general class of spline spaces for
arbitrary spatial dimension s and any degree k introduced in [11]. Since
these spaces are actually linear spans of appropriately selected B-splines,
their elements possess k - 1 continuous derivatives. Moreover, although our
own piecewise polynomials are only of total degree k we shall show that they
provide the same approximation rates achieved by tensor product
constructions, which use coordinatewise degree.

Our main concern in this paper is to focus upon an important subclass of
the spline spaces in which certain "uniform" configurations of knot sets are
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chosen. This allows us to obtain local linear approximation schemes similar
to those considered in [5, 18] for the univariate case. Moreover, these
uniform configurations which we propose give us the facility to make local
refinements without interfering with the required global smoothness. So, the
considerable practical advantage of uniform grids can be combined with the
profit of "local adaptation" (cf. [2, 14D. This may provide an interesting
method for finding smooth multivariate adaptive schemes which are
generally hard to construct. (cf. the final remarks in [6 J).

Let us fix now some notation which will be used throughout this paper. x,
z will usually be elements of the Euclidean space R' with components Xi

which we sometimes also write as (X)i' We will always consider x as a
column vector and its transpose is denoted by x T

• For a, bE R' we
briefly write ab = (a lb l ... a.b.?, alb = (alibi ... a.lb.)T for c E R,
aC = (a~ '" a;f and ab =n:= I a~i. Furthermore, we set [a, b1=
{uER':ai~ui~bi' i= 1,2,... ,s}. In particular, [O,1]s is the unit s-cube.
For zo,"" Zs E R S we set

(
z .. ·z )

det ° • =1 ... 1

Multi-indices are denoted by a, 13, v E Zs+ equipped with the norm
lal = 2::=1 ai • In particular, we briefly write 1 = (1 ... If E R S

• We use
13 ~ a to mean what Pi ~ ai' and also set (;) = a!/P!(a - P)!, where

t -TIs ,a. - i=1 a i ..

For any domain DeRS, l1k(D) = {2:lal<kCaXa:caER, xED} is the
space of polynomials of "total degree" k on Q. II . lip (D) denotes the usual
Lp-norm taken with respect to the domain De R S with the familiar inter
pretation in case p = 00. Furthermore, denoting by DYthe partial derivatives
of order a of the function f, the Sobolev spaces of order k are given by
W;(D) = {I: IIDYllp E Lp(D), lal ~ k}, where again W'oo(D) = Ck(D).

We shall also use the following notation for the directional derivative off
along z E R S

, namely, D./= 2::=1 zi(8//8x;).
Finally, C will denote a generic constant which may take different values

at each occurrence and [F) is used to denote the convex hull of a given set
FeR'.

2. SOME PROPERTIES OF MULTVARIATE B-SPLINES

In this section we list some properties of the multivariate B-spline which
playa central role throughout this paper.
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Just as in the univariate case an s-dimensional B-spline is defined for
every knot set P = lxo,"" xnl c R S

, n ~ s, with

dim span([PD = s. (2.1 )

We postpone te definition of the B-spline but instead remark that for n = s
we can represent it by

=0;

xE [P],

xE [Pl.
(2.2a)

So, M(x IP) is then the characteristic function of the simplex [P] divided by
the volume of [Pl. In general, when n >s, we have the recurrence relation

n S

M(x IP) = -- Y Ci(x IXi ... Xi) M(x IP\lx i }),n-s/=,o J 0, J
X E RS

, (2.2b)

whenever Xii E P are chosen so that vols([ {xio ... Xi,} D > 0 and hence the
barycentric coordinates

(

X .... x·
C.(x Ix .... x.):= det '0 'j-l'

'j 10 I, 1 ... 1
X, Xij +1 ••• Xi, )!det (Xio ... Xi,)

1 .. ·1 1 .. ·1
(2.3)

are well defined.
These formulae were first stated by Micchelli [19]. An alternative

approach is given in [6]. Since by (2.2a, b) and (2.3) a B-spline is at any
point a convex combination of lower order B-splines, one can show that the
above relations give rise to stable algorithms for the numerical evaluation of
B-splines (cf. [8, 13 D, Le., the relative round off errors can be bounded by
the accuracy of the computer times a constant whieh depends only on sand
n but not on the position of the knots.

The above relations (2.2a, b), (2.3) also affirm that M(x IP) is a
polynomial of total degree n - s within any region which is enclosed but not
intersected by any (s - 1)-simplex spanned by elements of P.

Furthermore, the smoothness of M(x IP) is related to the configuration of
P as follows: M(x IP) E Cn-s-d(R S

) if every s +d elements of P span an s
dimensional set (cf. [10, 19 D. In particular, in the terminology of [10]

M(x IP) E Cn-1-s(R S ) (2.4)

if P is "O-degenerate," i.e., every s + 1 knots in Pare affinely independent.
The derivatives of M(x IP) (whenever they exist) are, as in the univariate
case, linear combinations of lower order B-splines (cf. [10, 19D.
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s

DzM(x IP) = n L cjM(x IP\{Xij }),
j=O

(2.5)

s

L CjXij = Z,
j=O

(2.6)

Thus by Cramer's rule cj = DzCij(xlxio'" Xi).
The following geometric interpretation of the B-spline which usually serves

as its definition will play a crucial role throughout this paper (cf. [4 D.
To any n-simples a= [{vo,""vn}] with vertices Vi one may assign a knot

set P(a) = {xo,..., xn}c R S by setting

(2.7)

Note that P(a) satisfies (2.1) if voln(a) > O. The following identity holds for
any non-degenerate n-simples a (cf. [11, 19D

where

volia) M(x IP(a)) = Ma(x), (2.8)

(2.9)

This confirms that M(x IP) is supported on [Pl.
Estimating the derivatives of the remainder in approximating a given

function by linear combinations of B-splines (cf. Section 5) is essentially
reduced by (2.5) to estimating the norms of the B-spline. One can actually
show that [12]

vols([P])-I+I/P ~ IIM(·1 P)ll p

~ n! (n + 1) vol ([p])-I+I/P,
s! s + 1 s

1 ~ p ~ 00, (2.10)

by constructing a simplex (J such that P = P(a), (J C [P] X [0, 1]n-s as well
as voln(a)~-M-(~)-lvols([P]) and using (2.8). As an immediate conse
quence, we get

n! (n - 1 )II DzM(. IP)llp ~ .. (s + 1)s. s

X min{ max IDzCij(x IXio ,..., Xi,) Ivols([P\{Xj,l ])-1+ I(P},
1 j=O.....s (2.11)

where 1= {{io,..., is} C {O,... , n}: vols([ (Xi ,... , Xi }]) > O}.o s
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3. LINEAR COMBINATIONS OF MULTIVARIATE B-SPLINES
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The previously stated properties of B-splines motivate us to develop
methods for approximating functions by linear combinations of these B
splines. To this end, the first essential task is to define a linear space of B
splines which has an appropriate structure for approximation. Of course,
"appropriate" should mean that polynomials of highest degree are to be
contained in this spline space. It is shown in [11] that this can be realized by
exploiting the geometric interpretation (2.8), (2.9). Indeed, following a
suggestion of de Boor [4] we define for a bounded domain il c R S the
"cylinder" iln.s = il X [0, 1]n-s and consider a triangulation f5(il n,s) =
{ad7~ 1 of il n,s' Here a collection g-(r) of simplices is called a triangulation
of r if r is contained in the union of these simplices and if the intersection of
any two of these simplices is either empty or exactly one common lower
dimensional face.

This construction implies, on account of (2.7) and (2.8), that

Setting

N

\~ M .(x) = 1,
~ r7 f
i~l

x E il. (3.1 )

a i = [{v~,... , v~}], !?= {Pi:i= I,...,N} (3.2)

then (3.1) means, in view of (2.7), that the linear span

y;,(!?, il) := span {M(x IP): P E!?, x E il} (3.3)

contains the constant functions on il. Here the integer k will always denote
the difference n - s and hence the degree of the splines. Let us state now an
immediate consequence of (3.3) concerning the approximation by elements
of y;,(!?, il). Fixing t j E [Pi]' i = 1,... , N, one clearly has

From (3.1) and the fact that M",(x) is supported on [P;] one may easily
derive (cf. [3, 11]) that

distoo(f: y;,(!?, il)) ~ w(f, h, il), (3.4)

where h := max{diam([P]): P E!?} and w(f, h, il) := sup{If(x + y) - f(x)l:
x, x +yEn, II y" ~ h} is the usual modulus of continuity, relative to the
Euclidean norm II . lion R s.
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Next we will point out how one may improve the estimate (3.4) when
approximating smooth functions on some bounded domain n contained in
[0,1P. Let aEZ~, lal~k, ao=O and I={i!,,".,i 1ul }c{s+I,... ,n} be
some set of distinct (but not necessarily increasing) indices, i.e., III = Ia I. Let
aj := I::{=o a i · We define for t E [0, 1] and every I, 111= lal, the map
Fk, I): R n

-+ R n by

Setting

(Ft(u; I»i = ui ;

= ui(l - t(1 - uj »;
j= 1,..., s.

i tl. I,

iE {ia +!,...,ia.}cI,
J-I J

(3.5)

ai(t, I) := [{Ft(v~; I), ... ,Flv~; I)}] (3.6)

one can show by the same arguments which were used in [11] for a special
choice of I that there is for every 5' given by (3.2) to> 0 so that for
tE [0, to] and III=lal~k

N

(1 - t(1 - x»U = L voln(ai(t; I) M(x IPi)
i=!

Note that (3.1) is obtained by choosing t = 0 or a = O.
The inclusion

for x E n. (3.7)

(3.8)

is now an immediate consequence of (3.7). This fact will be exploited in the
following sections to construct linear local approximation schemes for
certain uniform configurations of knot sets providing optimal approximation
rates.

Finally, one should note that in principle the global structure of these
spline spaces is by contruction not affected by "local modifications" such as
refinements (of the underlying triangulation). This fact is in contrast to
tensor product spaces.

4. UNIFORM CONFIGURATIONS OF KNOT SETS

In this section we shall deal with a special case of the rather general
construction (3.2), (3.3). This concrete construction may be viewed as a first
attempt to give instances of the multivariate spline spaces Y';,(..?, n) which
may be used for numerical calculations.

The idea is to make up special triangulations of R S X [0, I]k by first
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decomposing R S X [0, l]k into congruent parallelepipeds which are in turn
triangulated in a canonical way described below.

Let the vectors ei = (Jij)J= 1 form the usual standard orthonormal base in
R n

. Denoting by Pern the group of permutations of the set p,...,n} one may
assign to any 1r E Pern an n-simplex a" = [ {v~ ,... , v~}] by

v~=O, vj = vj_l + e"U)' j= 1,..., n. (4.1 )

,Jf;, = {a,,: 1r E Pern} is called "Kuhn's triangulation" of the unit cube [0, 1r
(cf. [1,17]). When A is the affine transformation which takes [0, 1]n into a
parallelepiped V Kuhn's triangulation of V is given by ~(V) =

{A(a,,): 1r E Pernio
In order to illustrate the structure of~ and for later reference, we list

some known properties of these triangulations (cf. [1, 17]).

PROPOSITION 4.1. Let~ be defined by (4.1).

A II elements of~ have equal volume.

The restriction of~ to any rjace Q of [0, 1]n coincides with

(i)

(ii)
X;(Q).

(iii) ~ is "compatible with translations," i.e., the induced
triangulation of any (n - 1) face of [0, 1] n can be obtained by translating the
triangulation of the opposite (n - 1)jace.

(iv) ,Jf;, is sequential, i.e., assigning a graph G(~) by taking a" E~
as nodes where two nodes are connected if the corresponding simplices have
a nonempty common (n - 1)jace, then "sequentiar' means that G(~) can
be traversed by passing through each node precisely once.

Note that by (iii) the union of Kuhn's triangulation of two adjacent cubes
having one (n - 1)-face in common is a triangulation of the union of both
cubes.

Of course, the same statements are valid with respect to ~(V), where V is
any parallelepiped in R n

•

When writing x + u or xu, where x E R S and u ERn, x will be always
understood to be raised to an n-vector by setting Xi = 0, i = s + 1,..., n. In
contrast to this xdenotes for any x E R S the n-vector (Xl'" X s 1 ... 1f.

The second ingredient of our construction is an (n X n)-matrix of type

1 ... ° all ... a lk

A=
0 .. ·1 asl ... ask (4.2)

1 °
° ... 1
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In fact, setting Q= [0, I]n, A gives rise for any hE R S+ to the following
collection of parallelepipeds:

? = ?(h, A) = 6(A(Q) +v) = {6u +6v, uE A(Q)}, vEZ~,

which are in turn used to define for any domain fJ E R S the spline spaces

~.h(A, fJ) = span{M(x IP(a)): a EJr,;(1.(h,A)), v E ZS, [P(a)) nfJ -=1= 0}.

(4.3)

In order to verify that ~.h(A, fJ) has good approximation properties we have
to check first whether ~.h(A, fJ) is of the type (3.2). Indeed, by (4.2) and
the definition of 6 we clearly have

and Proposition 4.1 (iii) assures that

is a triangulation of R S X [0, I)k. Thus ~.h(A, fJ) is actually of the type
(3.2).

In order to avoid that the supports of the B-splines are enlarged too much
by A we introduce a further condition on the matrix A. Setting for any a E R
a± = max{O, ±a}, let

k
± ._ \,~ ± ± _ ( ±)Sa; .- ..... au ' a - a; i= I'

j=l

We will always assume that

b := max{a;± : ±, i = 1,..., s} <1.

holds.

LEMMA 4.1. Using the above notation (4.5) implies

(4.4)

(4.5)

(i) diam([P(a))) ~ 2(VS)h for all a E ~.A' where h =
max{h;: i = 1,..., sf.

(ii) I(A(Q)):= {x E A(Q)IRS: volk({u E A(Q): ulRS = x}) = l} -=1= 0.

(iii) Let a; E Jr,;(9'.lh, A)), i = 1,2; then

[P(a;)] n [P(a2)] -=1= 0

holds only if 9'.,(h, A) and ?2(h, A) are neighbors.
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Proof Let u be any vertex of Q which is orthogonal to R S
• By the

definition of band (4.5) we have

max{I(Au)il: i = 1,..., s} ~ b <~. (4.6)

Observing the definition of 1.(h, A) this readily implies (ii) and (iii).
Moreover, (4.5) assures that diam(A(Q)IRs) ~ 20 which establishes (i).

As for the practical construction of the splines in .Yk.h(A, !J) consider the
following collection of knot sets:

p".v = {h«Avj) IRs +v): j= 0,... , n},

~.A = {P".v; n E Pern,v E ZS},

vE ZS,
(4.7)

where a,,= [{v~,..., v:}] EJr". Clearly, (4.3) says that ~.h(A,!J)=

span {M(x I P): P E 3\,A' x E !J}.
According to the properties of the B-splines listed in Section 2, ~.h(A,!J)

consists of piecewise polynomials of total degree k. More precisely, these
splines are polynomials in every region which is bounded but not intersected
by any (s - 1)-simples spanned by knots in P E ~.A' Figures 4.1, 4.2, and
4.3 illustrate this for the case s = k = 2, i.e., n = 4 where the following
matrix A gives rise to continuously differentiable splines.

(

1 0 -0.2 0.45 )
A = 0 1 0.4 -0.3

o 0 1 0 .
o 0 0 1

Figure 4.1 shows a typical knot set arising from projecting the vertices of
a corresponding simplex in Jr;, whereas the configuration which is induced
by all the elements of Jr; is depicted in Fig. 4.2. Shifting this "basic unit"
generates the whole configuration ~.A a typical section of which (consisting
of four basic units) is given in Fig. 4.3.

FIGURE 4.1



308 WOLFGANG DAHMEN

FIGURE 4.2

Recall that the structure of ~.h(A,Q) is completely determined by the
knot sets only. The corresponding "cut regions" shown in the figures are
produced automatically. The practical construction of the knot sets amounts,
according to (4.6), simply to projecting and shifting the vertices of the
corresponding fixed simplices a" E Jr;. (cf. (4.1)). (4.1) in turn may be
performed for every n E N by efficient algorithms which exploit the
sequential structure of Jr;. (cf. Proposition 4.1 (iv)), e.g., by "reflections"
(cf. [1 D.

Accordingly, evaluating the elements of ~.h(A,Q) is reduced to
evaluating only the B-splines (up to rescaling and shifting) which are
induced by Jr;. (cf. Fig. 4.2).

FIGURE 4.3
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Now we will discuss in what way the global smoothness of the splines on
~,h(A, fl) is related to A. Starting with the simplest case where aij = 0,
i= 1,... ,s, j= 1,...,k in (4.2), we observe that [P,.,o] E~([O,hl] X ... X
[0, hs ])' So ~,h(A, fl) is the space of piecewise polynomials of total degree k
with respect to the triangulation U {[P,..y]: v E ZS, 7r E Pers} without any
smoothness constraints when passing from one simplex to a neighboring one.

The other extreme case of highest smoothness is more interesting and will
turn out to be related to the following type of matrices A. To this end,
consider the following collection of sets of disjoint sets of indices from 1 to
n:

f= {J= {Ii:i= 1,...,s}:Ii c {l, ... ,n},IJ1Ij =0, i=l=jf·

Denoting by Ai' i = 1,..., n, the columns of A restricted to R S let

BJ = 1;= A j :i=I,...,sl.
?JElf ~

The matrix A is called "dispersive" if one has for all J E f

dim span{BJ} = s, (4.8)

i.e., every s sums over disjoint sets of projected columns of A are linearly
independent.

A sufficient condition for A to be dispersive is, e.g., that the first s rows of
A form a strictly sign consistent matrix of order s (cf. [16, p. 47]). This may
be easily confirmed by evaluating det(RJ ) so that one obtains a sum of s
minors of A. Since by definition all the summands have the same non-zero
sign, we trivially get det(BJ ) =1= 0. As for examples of sign consistent matrices
see also (16].

THEOREM 4.1. Let ~.h(A, fl) be defined by (4.3); then

~.h(A, fl) c Ck-I(fl)

holds if and only if diagn(h)A is dispersive.

Proof The proof is based on the following characterization of the set f.

Let Ai denote the set of indices I for which the components (vj)/ = 1, where
vi is again defined by (4.1). Observing that in view of (4.1) the vi are
lexicographically ordered, Le., (vj)/ ~ (vi+ I)/, j = 0,... , n - 1, 1= 1,..., n, we
conclude that

j= 0,..., n - 1.
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Furthermore, we observe that for any set of increasing indices
Uo,"" js} c {O,..., n} and any 7t E Pern the collection {AJ~\AJ~. : i = 1,... , s}

I I-I

belongs to f. Moreover, it is not hard to see that all the elements of fare
of this type. In fact, setting for Jo= {Ij : j = 1,..., sf, A j = U {Ir : r = 1,..., j}
(4.1) affirms the existence of 0"'0 E cA';; and 0 = ro <r l <... <rs ~ n such
thatA~~=0 andA~Jo=Aj,j= 1,... ,s. Hence we have

f = llA/:\AL,: i = 1,... , sf: 1r E Pern , Uo, ...,js} c {O,..., nIl. (4.9)

On account of (2.~) and (4.3) it is now sufficient to show that A = diagn(h)A
is dispersive iff {Av; IRs: j = 0,... , n} is O-degenerate for all 7t E Pern' To this
end, note that

(4.10)

where AI denotes the restriction of the lth column of A to R S
• So, by virtue of

(4.10) we can write for any Uo,'''' js} c {O,... , n}

s

\' cIA(v'h ~ VJ.)IRS = 0
1=1

has for any set Uo,'''' js} c {O,..., n}, 7t E Pern only the trivial solution iff the
respective set of vectors (LmeA~\A~ Am) are linearly independent which in

JI J,-l
view of (4.8) and (4.9) is the assertion.

If will turn out below that it is desirable to have such dispersive matrices
which distribute the knots as uniformly as possible, that is to say, the ratios
of the radii of the inscribed and circumscribed balls of any s-simplex
spanned by s + 1 vectors in any knot set are to be as large as possible. This
may be realized by optimizing the entries au of A subject to the restriction
(4.5). Since for k =0, the matrix A =diag.(h)A is trivially dispersive, we
may take it as a starting point for the recursive construction of higher order
dispersive matrices. Clearly when appending an additional column to any
dispersive matrix, the resulting matrix is not dispersive only on a set of
measure zero.

We wish to distinguish between two kinds of information associated with
every knot set which determines the structure of ~,A' On one hand the
position of the knots and on the other hand their memberships to certain
knot sets. By preserving the knot set structure but varying the position of the
knots (within certain ranges) one obtains "distorted" configurations which
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may be viewed as counterparts to irregularly spaced knots in the univariate
case. Since these configurations are generated by appropriate distortions of
the uniform triangulation g;"A defined above the corresponding classes of
polynomials are still contained in the resulting nonuniform spline spaces.
This property of ,Y';"h(A,.o) should allow us to adapt if necessary the
network of knots so that the domain on which the B-splines form a partition
of unity is adjusted well to the given domain n. Of course, in the case that .0
is, say, the union of a finite number of s-rectangles this can be achieved
without passing to irregular configurations.

As a model we want to construct now a scale of configurations of knot
sets which will be adjusted in the above sense for simplicity to .0 = [0, l]s.
Given a matrix A satisfying (4.2) and (4.5) we assign to any mEN a mesh
size h by setting

(4.11 )

where a ± are defined by (4.4). For any mEN the corresponding
configurations of knot sets will be induced by the matrices

(4.12)

Defining the vectors d± E R~ analogously to (4.4) now with respect to H we
consider similarly as before the affine maps H v : R" -+ R" defined by

HJu):= Hu + 6v - d+, (4.13 )

and the corresponding configurations of knot sets

..9H = {Pn,v: v ~ m . 1, n E Per,,}. (4.14)

We wish to discuss the corresponding spline spaces being again of type (3.2).

~(H) := span {M(x IP) : P E ~}.

For later reference we list some elementary properties of this setting.

(4.15)

LEMMA 4.2. Let hand H be defined by (4.11) and (4.12), respectively.
Then one has

(i) d± = a ±I«m - 1) hi + 1), d ±Ih = a ±Ihi' mh = 1 + d + + d - ;

(ii) {x E R S
: volk({u E H(Q): ulR , = xl) = l} = [d+, h - d-];

(iii) .0 is exactly the domain where the B-splines arising from ~ form
a partition of unity, i.e.,

.0= lXERs:volk ({UEU {Hv(Q):v~m .1}:UIRs=X}) = 11·
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(iv) For every v ~ m . 1 and n E Pern one has

vols([P".vDlvols(.o (J [P",v]) ~ s!«l + 2b)/(1 - 2b))S,

where b is the constant appearing in (4.5).

(v) The global smoothness of the splines in 'y;'(H) is for sufficiently
small h completely determined by the matrix A, specijically, H is dispersive
for sufficiently small h iff Ao:=A diagn(h 1) is dispersive.

Proof (i) and (ii) are immediate consequences of the definitions of d ±

and (4.11). (ii) and (4.13) provide (iii). From (ii) and (iii) and (4.14) we
conclude now that

vol.([P",v] (J.o) ~ (lis!) vols([d+, h - d -]) ~ (lls!)(l - 2by . hI

holds for any n E Pern' V ~ m . 1. Thus (iv) follows from the estimate

Setting mH:= (u ij)7J = 1 and A o=A diagn(h 1):= (vij)7,j=1' (4.11) and (4.12)
yield

lim uij = vij'
m~oo

i= l,...,s, j= l,... ,n.

This completes the proof.
Let us close this section with some brief remarks concerning the dimen

sionality of .Y;,(H). Setting

we have the estimates

g-H = U{)Y,;(Hv(Q)): v ~ m . I} (4.16)

However, we shall see below (cf. the remark subsequent to (5.5)) that when
k> 1 the upper bounds are not sharp, i.e., dim Yk(H) < card(3"H)' A more
detailed discussion concerning the precise dimension of such spaces will
follow elsewhere. Here we mention only that one has for all choices of A,
dim 'y;'(H) = card(g-H) iff k = 0, 1.
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5. LOCAL ApPROXIMATION SCHEMES

In this section we construct and discuss certain linear local approximation
processes which will be related to the uniform configurations given by (4.14).
More precisely, we are interested in operators of the following type:

Q(H If)(x) := \ ' A,,)f) N(x In, v), (5.1 )
",.

where according to (4,14) L".• will always mean summation over n E Pern

and v E Z~, v ~ m . 1. It is somewhat more convenient to use here the
"normalized" B-splines (cf. (4.11), (4.14n

N(x In, v) := (h'jn!) M(x IP"..). (5.2)

Indeed since h'jn!=voln(a) for all aEf5H (cf. (4.16)), we have (cf. (2.8),
(2.9), (3.1), Lemma 4.2(iii))

~ N(x In, v) = 1 for all x E n. (5.3)
",.

Following the ideas in [5, 18], An)f) will be linear functionals which are to
be chosen in such a way that Q(H, .) reproduces all polynomials up to the
degree of the splines. The construction of these functionals is based on
representations of the monomials XO as linear combinations of the B-splines
N(x In, v),

To this end, we consider first for w = (1 + 2(a+ +a-n- I the affine
transformations

L(x) = w(x + a+ + a-),

L(u) = w(u + a+ + a-),

xEn,
(5.4)

Setting for a given nEPern and vEZ~, uj=L(Ao(vj)-a++vh,),
j = 0,... , n, we define for any aE Z~, lal ~ k, and any index set I, 111= la I
as in (3.5).

(I ) '-d (FI(Uo;!)'" FI(Un ;!))11 ,n, v .- et .
1 ... 1

(5.5)

(5.6)"O(n, v):= (L "V, n, v))!r(a).
111=0

It is readily seen that to any a, lal ~ k, we can assign rea) = (;J' (k~;,) .
(k-al-~'; -as-I) = (~) different mappings F I(·,!), III = a. So, we consider the
averages

640/31/4-2
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The following relation between I1U(n, v) and I1U(n, 0), v E Zs+' will play a
crucial role.

LEMMA 5.1. Let I1U(n, v) defined by (5.5) and (5.6); then the following
relation holds

I1U(n, v) = ku (; )(wh\ v)IV-Il(n, 0).

Proof. Writing for any III = lui

11(1, n, v) = (-1)" det(F\(u\ ;/) - F\(uo; I) .. , F\(u,,; I) - FI(uo; I))

= :(_1)" det(A(I, n, v))

it follows immediately from (3.5), (4.13) and the definition of uj = uin, v)
that the matrix A(I, n, v) takes the following form

A(I, n, v) =

with ej;E {O, l}depending on nand Yj=wAovj, Yj=Yj+a-w. Since the
determinant is linear with respect to the rows we obtain

where the matrices B;, i = 1,2, coincide with A (I, n, v) in all but thejth row
and (ej \(Y\)j"'6jn(Y,,)j) and (ej\,...,6j,,) are thejth rows of B\ and B 2 ,

respectively. Applying this decomposition successively to all the rows
indicated by I, and observing that for any 13 ~ u there are (;) distinct subsets
/', 1/'1 = 1131, for which

FI(F\(u; IV'); I') =FI(u; I)

we obtain

where

(~

gU-P(l, 7C, 0):= C~I 11(!\I'; n, 0))I(~) .
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Moreover, it is not hard to realize that

( L ea-p(I,n, o))!r(a) = '1a
- P(n, 0)

III = lal

which in view of (5.6) completes the proof.
Defining now

315

and for any h given by (4.11)

we arrive at the following lemma.

(5.8)

LEMMA 5.2. Using the above notation one has for lal ~ k

L e~.fi(x In, v) = xa for x E ll. (5.9)

Proof Let us define similarly as in (5.4) for v = (I + 2(d+ + d-n- l the
transformations

Y(x)=v(x+d+ +d-),

9(0) = v(u + d+ + d-),

xEll,

uEll X [0, It
(5.10)

Defining furthermore for n E Pern , v ~ m . I, lal ~ k, (/J(I, n, v), (/Ja(n, v) as
in (5.5) and (5.6) but with Uj replaced by the vectors Y(H.(vj))
Lemma 4.2(i) yields

(/Ja(n, v) = (vhjwhl)a '1a(n, v). (5.11 )

Moreover, we observe that Y takes [-d+ - d-, 1 + d+ + d-] into II and

g' == {Y(a): aE~}

is a triangulation of III X [0, 1]k, where III = [v(d+ + d-),
v(1 + d+ + d-)] ell. Note that all the vertices of simplices in g' belong to
U {ll X {u}: U is a vertex of [0, l]k}. It is then not hard to see that the
arguments of [11, Theorem 2.1] hold in this particular case for t = 1, where t
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occurs in the map FtC-; I) (cf. (3.5». Hence (3.7) implies on account of the
definition of ep"'(rc, v)

ZU = L epU(rc, v) N(z I rc, v), (5.12)

where N(z I rc, v) are the "normalized" B-splines with respect to the
configuration of knot sets induced by i", i.e., when z = Y(x) E il,

N(z Irc, v) = N(x Irc, v).

In view of the definition (5.8) we have now

(5.13 )

Since ~W~Il) = (~WijY) we can rewrite the right hand side of the above
equation after reordering the summands as

By virtue of Lemma 5.1 and (5.11) we obtain

which by (4.11), Lemma 4.2(i) and the definitions of v, w reduces to

Thus, we get by (5.10), (5.12) and (5.13)

~ ~~.vN(x I rc, v) = ~ v-u C~u (~ ) (-v(d+ + d-»Y

X epu-Y(rc, v) N(z I rc, v) )

=v-UL (a) (-v(d- +d-»Yzu-y
y<u Y

= v-U(z - v(d+ + d-)t= (y-1(z)t= XU

which completes the proof.
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Note that the coefficients ~~.v are essentially averages over volumes of
simplices (cf. (3.7» which are obtained by different choices of the index sets
I, 111= lal. So, for k> 1 the ~~.v do not form a unique collection of coef
ficients satisfying (5.9). This means, in accordance with the remarks at the
end of Section 4, that the N(x I 71:, v) are in general not linearly independent.
Since we merely want to show in principle that in spite of this lack the ideas
in [5, 18] can be made to work in the present setting, by using the special
construction (5.8), we restrict ourselves to the discussion of a possibly
simple type of operators Q(H; .) which involve evaluations of derivatives of
the approximated function f Further variants which require only point
evaluations off itself are discussed in [13].

Fixing 0" in [{Aov~ - a+,...,Aov~ - a+}] nn we set for h given by (4.11)

t".v=hv+o"j«m-1)h t + 1)

and define for lal ~ k and g E Ck(R S
) the linear functionals

Ordering the multi-indices lexicographically it is readily seen that

(5.14)

(5.15)

is a triangular matrix with the constant diagonal entries a! Hence the system

has a unique solution (a~.JI"1 .;;k' Setting now

IPI ~ k, (5.16)

one has A"jX") = ~~.v so that for g E Ilk

Q(H, g) = L A".v(g) N(x I71:, v) = g(x),
".v

x E .0.

(5.17)

(5.18)

Moreover, the polynomials ~.vCx) = (x - t,,)"ja! E Ilk satisfy

(5.19)

Observing (5.16), (5.17) and (5.19) when applying A".v to both sides of the
equality
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we obtain
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a~,v = (l/a!) ku (; ) (-t",v)U-p~~,v. (5.20)

This yields in view of the homogeneity of e~.v (cf. (5.8))

a<:.,v = (h/hl)Ub~,v'

where ~,v satisfies for v E Z~

(5.21 )

(5.22)

In particular, the special structure of the ~.v provides

LEMMA 5.3. Let a~.v be defined by (5.20) then one has

a~,v = a~.o' (5.23)

Proof Considering

'\' aU AU (xII) = '\' aU AU «x +hv)ll)
~ n,O n,V ~ ~tO ~.o

u<p u<p

= L (P )(hv)Y (L (L a~.oA~,o(XIl-Y)) (5.24)
y<p Y u<p-y u<p-y

and using (5.16) with v =0 the right hand side of (5.24) simplifies to

which in view of (5.8) is equal to C;~,v' The assertion follows now from the
uniqueness of the solution of (5.16).

Clearly (5.23) implies by (5.21) that also

b~.v = b~.o'

holds which means that for Ia I~ k, v E Z~ , 1r E Per",

la~,vl ~ (max{lb~.ol: lal ~ k, 1r E Per,,}/hn hU
• (5.25)

This leads to (cf. [9])



MULTIVARIATE B-SPLINES 319

LEMMA 5.4. For each n E Pern and v:S;;; m . 1 (cf (4.11» there is a
junctional X",v E L;(fJ) supported in [P",v] n fJ such that

(i) A",v(g) = A",.{g)jor all g E llk(fJ), where A",v is defined by (5.17).

(ii) IA",v(f)I:s;;; Cvols([P",vD-1PllfllP([P",v] nfJ), where C depends
only on s, k and b (cf (4.5)).

Proof By the definition (5.17) we have for g E Ih(fJ)

IAid:S;;; L: la:,vIIA:,v(g)l·
1"I';'k

Setting h = max{h;: i = 1,... , sf, (5.25) provides

la:,vIIA:,v(g)l:s;;; Chl"IID"g('t",v)l· (5.26)

By Lemma 4.2(iv) we can find a cube I",ve [P",v) n n such that

vols(I",v) ~ C vol.([P",vD,

where C> 0 depends only on sand b (cf, (4.5», Assuming that t",vE I",v a
standard scaling argument provides

where C depends only on s, k and b. Now, the Hahn-Banach theorem
guarantees the existence of a norm preserving extension A",v of A",v from

llk([P",vD to all of LP([P",vD.
In the following, we shall briefly write A",v instead of A",v'
Weare now in a position to estimate the remainder

IID"(f - Q(H,f»/Ip(n) by following standard lines (cf. [5, 18D where
Q(H, .) is given by (5.18) with respect to the functionals in Lemma 5.4. By
Lemma 5.4(i) and (5.18) we have whenever Djand D"Q(H,f) exist

D"(f - Q(H,f))(x) = D"(f - g)(x) +D"(Q(H,f - g))(x)

= D"(f - g)(x) + L: A,,)g - f) D"N(x In, v),
(",V)E'I'(X)

where 'l'(x) = {(n, v): x E [P1r;,V)} and g is any polynomial in llk(fJ).
Denoting by Q1r;,V the smallest cube containing [P", v) nn and setting
E""v' = U {'l'(x): x E Q""v'} one gets by virtue of Lemma 5.4(ii)

IID"(f - Q(H,f))llp(Q""v'):S;;; IID"(f - g)llp(Q",.v')

+C L:

( ~

X t~,vJ ID"N(x In, v)IP dX) . (5.27)
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A repeated application of (2.5) and (2.11) affirms in view of (4.13) and
(4.14)

When a = 0 one clearly has C = 1. But when Ia I>0, C will depend on the
matrix H. More precisely, one may derive from (2.11) that C is of moderate
size if at least s + 1 +Ia I of the knots in P",0' n E Pern are sufficiently
uniformly distributed (cf. the remarks following Theorem 4.1 ).

However Lemma 4.2(v) ensures us that the constant C is determined by
the matrix Ao = H diagn(h l ) and hence does not depend on h.

So, (5.27) and (5.28) yield with Q""v' = U{Q".v: (n, v) E E"',v,l

IIDu(f - Q(H, f))llp(Q",.v') <C IIDu(f - g)lliQ""v')

+ C Ilf - gllp(Q""v') h- 1U \.

Choosing g E Ilk so that (cf. [9; 21, p. 85])

IIDu(f - dlp(Q",.v') <C(diam Q",.v./+ I-Iul Iflp,k+ I(Q""v')'

where Iflp.k+I(,Q) = (L:lul=k+IIIDuJII~(,QWIP, we obtain

IIDu(f - g)lliQ""v') <Chk+I-luI Iflp.k+ I(Q""V')

with C depending only on b, sand k. Hence

So, after summing up the local estimates with respect to n', v' we arrive at
the following result.

THEOREM 5.1. Let Q(H;.) be defined by (5.18) with respect to the
functionals A",v given by Lemma 5.4 and suppose that DUN(x In, v) E Lp(,Q),
n E Per n , v <m ·1 (cl (4.11)) andfE ~+I(,Q), then

IIDU(f - Q(H: J))llp(,Q) <Chk+I-\ul Iflp.k+ I(,Q),

where the constant C depends only on s, k and b (cl (4.5)) when a = 0 and
additionally on the matrix Ao when Ia I> O.

Note that the approximation behavior for lal > 0 is essentially governed
by the constant in (5.28). This motivates us to look for such dispersive
matrices which are optimized in the sense of Section 4. Note also that the
matrix A 0 plays the role of a local mesh ratio.

Using the equivalence of the K-functionals to corresponding moduli of
smoothness (cf. [9, 15]) (at least for the domains considered here)
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Theorem 5.1 immediately provides more general estimates for f E Lp(Q) in
terms of (k + 1)-th order moduli of smoothness.

Observing the relations (5.7), (5.8), (5.17), (5.21) and (5.23) we note that
the construction of Q(H; .) requires essentially the computation of .u~ (cf.
(5.7)) and b:.o (cf. (5.22)). So, when passing to a finer mesh size h the
increase of computational work is caused only by the additional function
evaluations. Recall that the essential relation (5.23) depends on the average
structure of the ~.v' In fact, numerical tests show that when replacing, e.g.,
for k = 3, S= 2, the coefficients 1J13 (n,O) in (5.7) by ,,13(/, n, 0) for some I,
III = 1131, the errors increase for the same h by two digits while the
computational work increases considerably, too.

Furthermore, one may reduce the number of function evaluations (by a
factor (s + k)!) by setting for all n E Pern

where, say to lies on the projection of the line connecting 0 and 1n in Q.
Since this is an edge shared by all the simplices in %:z (cf. (4.1» t v lies in
(the closure of) all the supports [P". v] of the B-splines arising from %:z.

Finally, one may replace the functionals A:, v (cf. (5.20)) by appropriate
difference quotients so that the application of the corresponding approx
imation schemes requires only the knowledge of function values rather than
derivatives. This is pointed out in more detail in [13]. As expected,
Theorem 5.1 holds for these schemes, too.

The above results have been confirmed by some numerical tests which
were carried through by A. Krayer and P. Scharnagl. Table 5.1 shows as an
example the Loo-approximation errors obtained for different degrees k and
the mesh sizes h = (i, n h = (-f6, -f6) when approximating
f(x, y) = sin(n(x + y)) by a process of the above type. The last column in
Table 5.1 illustrates the effect of replacing the averages ,,~n, 0) by the
volumes r,(/, n, v) for some fixed index set 1 (cf. (5.5), (5.6)).

TABLE 5.1

h k Error Errora

(0.125,0.125) 0 0.0507472 0.0507472
(0.125,0.125 ) 1 0.0129257 0.0129257
(0.125,0.125) 2 0.0008099 0.0018260
(0.1 25, 0.125) 3 0.000037 0.0019437

(0.0625, 0.0625) 1 0.0024782 0.0024782
(0.0625,0.0625) 2 0.0000722 0.0003460
(0.0625, 0.0625) 3 0.0000067 0.0009446

a From replacing the averages 1J~n, 0) by the volumes 1J(1, n, v) for some fixed index set 1.
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6. LOCAL REFINEMENTS

Refining a uniform grid locally is known to be an efficient practical
method to adapt on one hand the singularities, say, of the approximated
function, whereas on the other hand many practical advantages of uniform
grids are preserved. But in general, the construction of refinements which are
to be compatible with a certain higher order global smoothness is known to
be rather hard or sometimes even impossible.

In this section, we propose how to increase the flexibility of the above
uniform spline spaces by generating "local refinements." The idea is to refine
locally the "higher dimensional triangulation ~ (cf. (4.16». In fact, decom
posing the parallelepiped ~(Q), Q = [0, Ijn into the 2n congruent
parallelepipeds ~ (Q.. ), where Q.. = diagnG ... n(Q) +~, f.Ji E {O, t}, it is
readily seen that

X' = U {~(Q .. ): f.Ji E {O, ~}, i = I,... , n}

is a triangulation of Hy(Q). Moreover, using Proposition 4.I(ii) one may
easily show by induction that X' is actually a refinement of~(H'(Q», i.e.,

Every element of~(H'(Q» is the union of elements of X'. (6.1)

Repeating this process one may keep on decomposing some or even all the
Hy(Q..), i.e., given g"H (cf. (4.16», one may assign to every v ~ m . 1 a
partition Py of the above type so that the global refinement

gives rise to the spline spaces

Y';,(H,~) = span{M(x IP(a»: a E g"gp, x E il},

where

Note that in general, g",9P need not be a triangulation in the above sense
because adjacent simplices will no longer have to match up. Although
therefore (3.7) cannot be applied directly it is an immediate consquence of
(6.1) that still

IIiil) c Y';,(H,~) (6.2)



MULTIVARIATE B-SPLINES 323

holds. Indeed, (2.7), (6.1) and (5.9) affirm, that we have

xu= 2:c;~,y ( 2: VOln(G)M(xIPun), xEn. (6.3)
n,V oc.Hv(u,,)

Furthermore, note that the "finer" knot sets P(G) differ from the original
ones in gH only by dilation. Hence, (cf. the remarks in Section 2) the B
splines arising from finer knot sets have still the same smoothness as those
generating the uniform space, i.e., in particular we may state for any
refinement !:JR

(6.4)

which in turn is equivalent to H being dispersive (cf. Theorem 4.1). Note
also that for any refinement !:JR the evaluation of a spline in y"(H, ..5f) essen
tially still involves (up to shifting and rescaling) only the evaluation of the B
splines induced by ~(Q).

These local refinements will be used in a forthcoming paper to construct
smooth adaptive approximation shemes for any spatial dimension and degree
k which are still equivalent (as for the complexity of the involved spaces and
approximation rates) to optimal adaptive piecewise polynomial approx
imation (cf. [61).

ACKNOWLEDGMENT

The author would like to thank Dr. Charles A. Micchelli for many helpful discussions and
suggestions while preparing this paper.

REFERENCES

I. E. ALLGOWER AND K. GEORG, Triangulations by reflections with applications to approx
imations, in "Proceedings, Conf. Oberwolfach, Numerische Methoden der Approx
imationstheorie Birkhiiser, 1978."

2. I. BABUSKA, The self-adaptive approach in the finite element method, in "The
Mathematics of the Finite Elements and Applications II: MAFELAP 1975" (J. R.
Whiteman, Ed.), Academic Press, New York/London, 1976.

3. C. DE BOOR, On uniform approximation by splines, J. Approx. Theory I (1968),
219-235.

4. C. DE BOOR, Splines as linear combinations of B-splines, in "Approximation Theory II"
(G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 1-47, Academic Press, New
York, 1976.

5. C. DE BOOR AND G. FIX, "Spline approximation by quasi-interpolants, J, Approx. Theory
7 (1973), 19-45.

6. C. DE BOOR AND J. R. RICE, An adaptive algorithm for multivariate approximation
,giving optimal convergence rates, J. Approx. Theory 2S (1979), 337-359.



324 WOLFGANG DAHMEN

7. J. H. BRAMBLE AND M. ZLAMAL, Triangular elements in the finite element methods,
Math. Comp 24 (1970), 809-820.

8. M. G. Cox, The numerical evaluation of B-splines, J. Inst. Maths. Appl. 10 (1972),
134-149.

9. W. DAHMEN, R. DEVORE, AND K. SCHERER, Multi-dimensional spline approximation,
SIAM J. Numer. Anal. 17 (1980),179-191.

10. W. DAHMEN, On multivariate B-splines, SIAM J. Numer. Anal. 17 (1980), 179-191.
11. W. DAHMEN, Polynomials as linear combinations of multivariate B-splines, Math. Z. 169

(1979), 93-98.
12. W. DAHMEN, Multivariate B-splines, recurrence relations and linear combinations of trun

cated powers, in "Proceedings, Conf. Oberwolfach, Multivariate Constructive Function
Theory, Birkhauser, 1979."

13. W. DAHMEN, Konstruktion Mehrdimensionaler B-splines and ihre Anwendungen auf
Approximationsprobleme, in "Proceedings, Conf. Oberwolfach, Numerische Methoden
der Approximationstheorie, Birkhauser, 1979."

14. J. A. GREGORY AND J. R. WHITEMAN, "Local Mesh Refinement with Finite Elements for
Elliptic Problems," Technical Report TR 124, Department of Mathematics, Brunei
University, 1974.

15. H. JOHNEN AND K. SCHERER, On the equivalence of the K-functional and the moduli of
continuity and some applications, in "Constructive Theory of Functions of Several
Variables," pp. 119-140, Lecture Notes in Mathematics No. 571, Springer-Verlag, New
York/Berlin, 1977.

16. S. KARLIN, "Total Positivity," Stanford Univ. Press, Stanford, Calif., 1968.
17. H. W. KUHN, Some combinatorial lemmas in topology, IBM J. Res. Develop. 45 (1960),

518-524.
18. T. LYCHE AND L. L. SCHUMAKER, Local spline approximation methods, J. Approx.

Theory 15 (1975), 294-325.
19. C. A. MICHELLI, A constructive approach to Kergin interpolation in R k

: Multivariate B
splines and Lagrange interpolation," Mathematical Research Center, University of
Madison, Wisconsin, Technical Summary Report 1978, Rocky Mountain J. Math. 10
(1980), 485-497.

20. J. MORGAN AND R. SCOTT, The dimension of the space of C' piecewise polynomials,
unpublished.

21. C. B. MORREY, "Multiple Integrals in the Calculus of Variations," Springer-Verlag,
Berlin/Heidelberg/New York, 1966.

22. M. J. D. POWELL, Piecewise quadratic surface fitting for contour plotting, in
"Proceedings, Conf. Software for Numerical Mathematics, University of Laughborough,
1973," pp. 253-271.


